QUANTITATIVE FINANCE

School of Finance, SUFE

Exercise for Part II (Spring, 2020)

Dr. Luo, Dan

1. There are three assets with the following covariance matrix V and expected returns \bar{r} .

	$\lceil 2 \rceil$	1	0			0.4	
V =	1	2	1	,	$ar{m{r}}=$	0.6	
	0	1	2			0.6	

- a. Find the Global Minimum Variance Portfolio.
- b. Given the portfolio expected return r_p , find the corresponding minimum-variance portfolio.
- 2. In the Markowitz Model, the efficient portfolio with minimum variance is called the Global Minimum Variance Portfolio (GMVP). For the GMVP with return r_G and any portfolio with return r_P , prove that $Cov(r_P, r_G) = Var(r_G)$, where $Cov(\cdot, \cdot)$ and $Var(\cdot)$ denote covariance and variance, respectively.
- 3. (Dual Problem) In the Markowitz Model, we minimize the portfolio variance for any given level of portfolio expected return. Actually, we can also maximize the expected return of a portfolio for a given variance level (e.g., $\bar{\sigma}_p^2$) of the portfolio. Write down the maximization problem.
- 4. (Transaction Costs) The Markowitz Model assumes no transaction costs. Now we extend the model to include transaction costs.
 - a. Transaction costs for asset *i* are proportional to w_i and thus can be written as $c_i w_i$, where c_i is a constant. What is the variance minimization problem for this case?
 - b. Consider a more realistic case. Transaction costs for asset *i* are proportional to $|w_i|$ and different for opposite directions of trades. E.g., for buy-in, transaction costs are $c_B w_i$, and for sell-out, they are $-c_S w_i$. What is the variance minimization problem for this case? (Hint: you may use $\max(0, w_i)$ in the constraints.)

5. (Tracking) Suppose that it is impractical to use all the assets that are incorporated into a specified portfolio (such as a given portfolio). One alternative is to find the portfolio, made up of a given set of n stocks, that tracks the specified portfolio most closely—in the sense of minimizing the variance of the difference in returns.

Specifically, suppose that the target portfolio has (random) rate of return r_M . Suppose that there are *n* assets with (random) rates of returns $r_1, r_2, ..., r_n$. We wish to find the portfolio rate of return

$$r = w_1 r_1 + w_2 r_2 + \dots + w_n r_n,$$

(with $\sum_{i=1}^{n} w_i = 1$) minimizing $Var(r - r_M)$.

- a. Find a set of F.O.C.s for the w_i 's.
- b. Although this portfolio tracks the desired portfolio most closely in terms of variance, it may sacrifice the mean. Hence a logical approach is to minimizing the variance of the tracking errors subject to achieving a given mean return. As the mean is varied, this results in a family of portfolios that are efficient in a new sense—say, tracking efficient. Find the set of F.O.C.s for the w_i 's that are tracking efficient.